

CARBON DIOXIDE/VOLATILE ORGANIC COMPOUND TRANSMITTERS

Simultaneously Outputs Both CO2 / VOC

The Series CDTV Carbon Dioxide/Volatile Organic Compound Transmitters reduce energy cost in buildings by lowering the amount of conditioned air based on the occupancy of the space. By sensing both CO2 and VOC, the transmitter can detect fumes that may need to be exhausted during lower occupancy periods.

FEATURES/BENEFITS

- · Combination VOC and CO2 outputs reduce labor and material costs
- · Single beam dual wavelength NDIR CO2 sensor allows for use in spaces that may be occupied 24 hours a day
- VOC output is correlated to be equivalent to CO2 measurements
- · Ventilate using ASHRAE's occupancy-based VRP Algorithm

APPLICATIONS

- · HVAC applications in hospitals, schools, and commercial buildings
- · Demand control ventilation
- · Odor control
- · Waiting rooms or other spaces that may be occupied 24 hours a day

MODEL CHAR								
Example	CDTV	-2	D	4	Α	4	-RLY	CDTV-2D4A4-RLY
Series	CDTV							Carbon dioxide/VOC transmitter
Range		2						0 to 2000 ppm CO ₂ range
		5						0 to 5000 ppm CO2 range
Configuration			D					Duct
			Ν					North American style wall mount
CO ₂ Output				4				4-20 mA / 0 to (5 or 10) VDC
Temperature					0			None
Output					Α			10 KΩ NTC thermistor type III
					В			10 KΩ NTC thermistor type II
					С			3 KΩ NTC thermistor
					D			Pt100 Ω RTD
					Е			Pt1000 Ω RTD
					F			20 KΩ NTC thermistor
VOC Output						4		4-20 mA / 0 to (5 or 10) VDC
Options							RLY	Relay
							FC	Factory calibration certificate
							LCD	LCD display (wall only)
							COC	Certificate of calibration

SPECIFICATIONS

Range: CO2: 0 to 2000 or 0 to 5000 ppm (depending on model); VOC: 0 to 2000

ppm CO₂ equivalent.

Accuracy: CO2: ±40 ppm ±3% of reading.

Temperature Dependence: ±8 ppm / °C at 1100 ppm.

Non-Linearity: CO2: 16 ppm.

Pressure Dependence: CO₂: 0.13% of reading per mm of Hg.

Response Time: CO2: 2 minutes for 99% step change; VOC: 5 minutes.

Temperature Limits: 32 to 122°F (0 to 50°C). Duct Air Velocity Range: 0-4000 FPM (20.32 m/s). Power Requirements: 16-35 VDC / 19-28 VAC.

Power Consumption: Average: 2 watts; Peak: 3.75 watts.

Sensor: CO2: Single-beam, dual-wavelength NDIR; VOC: MEMS metal oxide

Output: Current: 0-20 mA, 4-20 mA, 0-10 mA, or 2-10 mA (depending on selection jumper, max 500 Ω); Voltage: 0-10 VDC, 2-10 VDC, 0-5 VDC, or 1-5 VDC (depending on selection jumper, min 500 Ω); Relay: SPST NO 2A @ 30 VDC.

Weight: 5.6 oz (158.8 g).

Enclosure Rating: Duct mount: NEMA 4X (IP66) for housing only; Wall mount:

Agency Approvals: CE.